2010 State of the Basin Exhibits

December 2011

Prepared for

Prepared by
Introduction
Introductory Text to the State of the Basin
Exhibit 1 – Chino Groundwater Basin – OBMP and Maximum Benefit Management Zones
Exhibit 2 – Water Service Areas of the Major Appropriate Pool Parties of the Chino Basin Watermaster

General Hydrologic Conditions
Introductory Text to General Hydrologic Conditions
Exhibit 3 – Santa Ana River Watershed Tributary to Prado Dam
Exhibit 4 – Long-Term Precipitation Within and Upstream of the Chino Basin
Exhibit 5 – Relationship of Precipitation and Storm Water Discharge in the Chino Basin – Water Year 1919/20 to 2009/10

Basin Production and Recharge
Introductory Text to Basin Production and Recharge
Exhibit 6 – Active Groundwater Production Wells - Fiscal Year 2009/2010
Exhibit 7 – Distribution of Groundwater Production
Exhibit 8 – Groundwater Production by Well – Fiscal Year 1977/1978
Exhibit 9 – Groundwater Production by Well – Fiscal Year 1999/2000
Exhibit 10 – Groundwater Production by Well – Fiscal Year 2009/2010
Exhibit 11 – Recharge Basin Locations
Exhibit 12 – Summary of Annual Wet Water Recharge Records in the Chino Basin
Exhibit 13 – Summary of Recharge and Discharge Based on Watermaster Records

Groundwater Levels
Introductory Text to Groundwater Levels
Exhibit 14 – Groundwater Level Monitoring Network – Well Location and Measurement Frequency as of 2010
Exhibit 15 – Wells Used to Characterize Long-term Trends in Groundwater Levels versus Climate, Production, and Recharge
Exhibit 16 – Long-Term Trends in Groundwater Levels versus Climate, Production, and Recharge in MZ1
Exhibit 17 – Long-Term Trends in Groundwater Levels versus Climate, Production, and Recharge in MZ2
Exhibit 18 – Long-Term Trends in Groundwater Levels versus Climate, Production, and Recharge in MZ3
Exhibit 19 – Long-Term Trends in Groundwater Levels versus Climate, Production, and Recharge in MZ4
Exhibit 20 – Long-Term Trends in Groundwater Levels versus Climate, Production, and Recharge in MZ5
Exhibit 21 – Groundwater Elevation Contours – Spring 2000
Exhibit 22 – Groundwater Elevation Contours – Spring 2010
Exhibit 23 – Groundwater Level Change – Spring 2000 to Spring 2010
Exhibit 24 – State of Hydraulic Control – Spring 2000
Exhibit 25 – State of Hydraulic Control – Spring 2010

Groundwater Quality
Introductory Text to Groundwater Quality
Exhibit 26 – Wells with Groundwater Quality Data – July 2005 to June 2010
Exhibit 27 – Total Dissolved Solids in Groundwater - Maximum Concentration (July 2005 to June 2010)
Exhibit 28 – Nitrate as Nitrogen in Groundwater - Maximum Concentration (July 2005 to June 2010)
Exhibit 29 – Perchlorate in Groundwater - Maximum Concentration (July 2005 to June 2010)
Exhibit 30 – Chromium in Groundwater - Maximum Concentration (July 2005 to June 2010)
Exhibit 31 – Hexavalent Chromium in Groundwater - Maximum Concentration (July 2005 to June 2010)
Exhibit 32 – Arsenic in Groundwater - Maximum Concentration (July 2005 to June 2010)
Exhibit 33 – Trichloroethene (TCE) in Groundwater - Maximum Concentration (July 2005 to June 2010)
Exhibit 34 – Tetrachloroethene (PCE) in Groundwater - Maximum Concentration (July 2005 to June 2010)
Exhibit 35 – 1,2,3-Trichloropropane in Groundwater - Maximum Concentration (July 2005 to June 2010)
Exhibit 36 – Cis-1,2-Dichloroethene in Groundwater - Maximum Concentration (July 2005 to June 2010)
Exhibit 37 – 1,1-Dichloroethylene in Groundwater - Maximum Concentration (July 2005 to June 2010)
Exhibit 38 – 2010 Delination of Groundwater Contamination Plumes
Exhibit 39 – Chino Airport TCE Plume in the Upper and Lower Aquifers
Exhibit 40 – Archibald South TCE Plume
Exhibit 41 – VOC Pie Chart Comparisons - Wells Within and Adjacent to VOC Plumes
Exhibit 42 – Trends in Ambient Water Quality Determinations for Total Dissolved Solids by Management Zone
Exhibit 43 – Trends in Ambient Water Quality Determinations for Nitrate as Nitrogen by Management Zone
Exhibit 44 – Chino Basin Management Zone 1 - Trends in Total Dissolved Solids Concentrations
Exhibit 45 – Chino Basin Management Zone 1 - Trends in Nitrate as Nitrogen Concentrations
Exhibit 46 – Chino Basin Management Zone 2 - Trends in Total Dissolved Solids Concentrations
Exhibit 47 – Chino Basin Management Zone 2 – Trends in Nitrate as Nitrogen Concentrations
Exhibit 48 – Chino Basin Management Zone 3 – Trends in Total Dissolved Solids Concentrations
Exhibit 49 – Chino Basin Management Zone 3 – Trends in Nitrate as Nitrogen Concentrations
Exhibit 50 – Chino Basin Management Zones 4 and 5 – Trends in Total Dissolved Solids Concentrations
Exhibit 51 – Chino Basin Management Zones 4 and 5 – Trends in Nitrate as Nitrogen Concentrations

Ground-Level Monitoring
Introductory Text to Ground-Level Monitoring
Exhibit 52 – Historical Land Surface Deformation in Management Zone 1 – Leveling Surveys (1987 to 1999) and InSAR (1993 to 1995)
Exhibit 53 – Vertical Ground Motion (2005 to 2010) as Measured by InSAR in the Chino Basin Area
Exhibit 54 – Vertical Ground Motion (2005 to 2010) - Leveling Surveys and InSAR in Western Chino Basin
Exhibit 55 – Groundwater Levels versus Ground Levels in the M21 Managed Area – 1970 to 2010
Exhibit 56 – Groundwater Levels versus Ground Levels in the Central M21 Area – 1993 to 2010
Exhibit 57 – Groundwater Levels versus Ground Levels in the Central M21 Area – 1930 to 2010
Exhibit 58 – Groundwater Levels versus Ground Levels in the Pomona Area – 1993 to 2010
Exhibit 59 – Groundwater Levels versus Ground Levels in the Pomona Area – 1930 to 2010
Exhibit 60 – Groundwater Levels versus Ground Levels in the Ontario Area – 1993 to 2010
Exhibit 61 – Groundwater Levels versus Ground Levels in the Ontario Area – 1930 to 2010
Exhibit 62 – Groundwater Levels versus Ground Levels in the Southeast Area – 1993 to 2010

References
Appendix A – Comments and Responses
<table>
<thead>
<tr>
<th>Acronyms, Abbreviations, and Initialisms</th>
<th>Acronyms, Abbreviations, and Initialisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>μg/L</td>
<td>IEUA - Inland Empire Utilities Agency</td>
</tr>
<tr>
<td>1,1,1-TCA</td>
<td>InSAR - Synthetic Aperture Radar Interferometry</td>
</tr>
<tr>
<td>1,1-DCE</td>
<td>ISOB - Initial State of the Basin</td>
</tr>
<tr>
<td>1,2,3-TCP</td>
<td>JCSD - Jurupa Community Services District</td>
</tr>
<tr>
<td>1,2-DCA</td>
<td>KM - kilometer</td>
</tr>
<tr>
<td>acre-ft</td>
<td>MCL - maximum contaminant level</td>
</tr>
<tr>
<td>acre-ft/yr</td>
<td>mg/L - milligrams per liter</td>
</tr>
<tr>
<td>AWQ</td>
<td>MSL - Milliken Sanitary Landfill</td>
</tr>
<tr>
<td>Basin Plan</td>
<td>MVWD - Monte Vista Water District</td>
</tr>
<tr>
<td>BM</td>
<td>MWDSC - Metropolitan Water District of Southern California</td>
</tr>
<tr>
<td>CAO</td>
<td>MZ - Management Zone</td>
</tr>
<tr>
<td>CBWM ID</td>
<td>NO₃- - N - nitrate expressed as nitrogen</td>
</tr>
<tr>
<td>CDA</td>
<td>ND - non-detect</td>
</tr>
<tr>
<td>CDFM</td>
<td>OBMP - Optimum Basin Management Program</td>
</tr>
<tr>
<td>CDPH</td>
<td>PBMZ - Prado Basin Management Zone</td>
</tr>
<tr>
<td>CIM</td>
<td>PCE - tetrachloroethene</td>
</tr>
<tr>
<td>cis-1,2-DCE</td>
<td>POTW - Publicly Owned Treatment Works</td>
</tr>
<tr>
<td>CVWD</td>
<td>RP - Regional Plant</td>
</tr>
<tr>
<td>DLR</td>
<td>RWQCB - Regional Water Quality Control Board</td>
</tr>
<tr>
<td>DTSC</td>
<td>SARWC - Santa Ana River Water Company</td>
</tr>
<tr>
<td>DWR</td>
<td>SBCFCDC - San Bernardino County Flood Control District</td>
</tr>
<tr>
<td>EPA</td>
<td>SOB - State of the Basin</td>
</tr>
<tr>
<td>ft</td>
<td>SWP - State Water Project</td>
</tr>
<tr>
<td>ft-bgs</td>
<td>TCE - trichloroethene</td>
</tr>
<tr>
<td>ft-bzp</td>
<td>TDS - total dissolved solids</td>
</tr>
<tr>
<td>GE</td>
<td>US EPA - US Environmental Protection Agency</td>
</tr>
<tr>
<td>GIS</td>
<td>USGS - US Geological Survey</td>
</tr>
<tr>
<td>GSWC</td>
<td>VOC - volatile organic compound</td>
</tr>
<tr>
<td>HCMP</td>
<td>Watermaster - Chino Basin Watermaster</td>
</tr>
<tr>
<td></td>
<td>WEI - Wildermuth Environmental, Inc.</td>
</tr>
<tr>
<td></td>
<td>XRef - anonymous well reference ID assigned by Watermaster</td>
</tr>
</tbody>
</table>